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1.3.6 Optimality of bounds

When recovering k-sparse vectors one obviously needs at least m ≥ k linear
measurements. Even when the support of the unknown vector would be known,
this number of measurements would be necessary to identify the value of the non-
zero coordinates. Therefore, the dependence of the bound (1.17) on k can possibly
only be improved in the logarithmic factor. We shall show that even that is not
possible and that this dependence is already optimal as soon as a stable recovery of
k-sparse vectors is requested. The approach presented here is essentially taken over
from [40].

The proof is based on the following combinatorial lemma.

Lemma 5. Let k ≤ n be two natural numbers. Then there are N subsets T1, . . . ,TN
of {1, . . . ,n}, such that

(i) N ≥
( n
4k

)k/2
,

(ii) |Ti|= k for all i= 1, . . . ,N and
(iii) |Ti∩Tj|< k/2 for all i $= j.

Proof. Wemay assume that k≤ n/4, otherwise one can takeN= 1 and the statement
becomes trivial. The main idea of the proof is straightforward (and similar to the
proof of Lemma 3). We choose the sets T1,T2, . . . inductively one after another as
long as possible, satisfying (ii) and (iii) on the way, and then we show that this
process will run for at least N steps with N fulfilling (i).

Let T1 ⊂ {1, . . . ,n} be any set with k elements. The number of subsets of
{1, . . . ,n} with exactly k elements, whose intersection with T1 has at least k/2
elements is bounded by the product of 2k (i.e., the number of all subsets of T1)
and

( n−k
'k/2(

)
, which is the number of all subsets of Tc

1 with at most k/2 elements.
Therefore there are at least

(
n
k

)
− 2k

(
n− k
'k/2(

)

sets T ⊂ {1, . . . ,n} with k elements and |T ∩T1| < k/2. We select T2 to be any of
them. After the jth step, we have selected sets T1, . . . ,Tj with (ii) and (iii) and there
are still

(
n
k

)
− j2k

(
n− k
'k/2(

)
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to choose from. The process stops if this quantity is not positive any more, i.e. after
at least

N ≥
(n
k

)

2k
( n−k
'k/2(

) ≥ 2−k
(n
k

)
(n−)k/2*
'k/2(

) = 2−k
n!

(n− k)!k!
· ('k/2()!(n− k)!

(n−)k/2*)!

= 2−k
n(n− 1) . . .(n−)k/2*+ 1)
k(k− 1) . . .(k−)k/2*+ 1)

≥ 2−k
(n
k

))k/2*
≥
( n
4k

)k/2

steps.

The following theorem shows that any stable recovery of sparse solutions requires
at least m number of measurements, where m is of the order k ln(en/k).

Theorem 7. Let k ≤ m ≤ n be natural numbers, let A ∈ Rm×n be a measurement
matrix, and let ∆ : Rm → Rn be an arbitrary recovery map such that for some
constant C > 0

‖x−∆(Ax)‖2 ≤C
σk(x)1√

k
for all x ∈Rn. (1.26)

Then

m≥C′k ln(en/k) (1.27)

with some other constant C′ depending only on C.

Proof. We may assume that C ≥ 1. Furthermore, if k is proportional to n (say k ≥
n/8), then (1.27) becomes trivial. Hence we may also assume that k≤ n/8.

By Lemma 5, there exist index sets T1, . . . ,TN with N ≥ (n/4k)k/2, |Ti| = k and
|Ti∩Tj|< k/2 if i $= j. We put xi = χTi/

√
k. Then ‖xi‖2 = 1, ‖xi‖1 =

√
k and ‖xi−

x j‖2 > 1 for i $= j.
Let

B =
{
z ∈ Rn : ‖z‖1 ≤

√
k

4C
and ‖z‖2 ≤ 1/4

}
.

Then xi ∈ 4C ·B for all i= 1, . . . ,N.
We claim that the sets A(xi+B) are mutually disjoint. Indeed, let us assume that

this is not the case. Then there is a pair of indices i, j ∈ {1, . . . ,n} and z,z′ ∈B with
i $= j and A(xi+ z) = A(x j+ z′). It follows that ∆(A(xi+ z)) = ∆(A(x j+ z′)) and we
get a contradiction by

1< ‖xi− x j‖2 = ‖(xi+ z−∆(A(xi+ z))− (x j+ z′ −∆(A(x j+ z′))− z+ z′)‖2
≤ ‖(xi+ z−∆(A(xi+ z))‖2+ ‖x j+ z′ −∆(A(x j+ z′))‖2+ ‖z‖2+ ‖z′‖2
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≤C
σk(xi+ z)1√

k
+C

σk(x j+ z′)1√
k

+ ‖z‖2+ ‖z′‖2

≤C
‖z‖1√

k
+C

‖z′‖1√
k

+ ‖z‖2+ ‖z′‖2 ≤ 1.

Furthermore,

A(xi+B)⊂ A((4C+ 1)B), i= 1, . . . ,N

Let d≤m be the dimension of the range of A. We denote byV $= 0 the d-dimensional
volume of A(B) and compare the volumes

N

∑
j=1

vol
(
A(x j+B)

)
≤ vol

(
A((4C+ 1)B)

)
.

Using linearity of A, we obtain

( n
4k

)k/2
V ≤ N ·V ≤ (4C+ 1)dV ≤ (4C+ 1)mV.

We divide by V and take the logarithm to arrive at

k
2
ln
( n
4k

)
≤ m ln(4C+ 1). (1.28)

If k ≤ n/8, then it is easy to check that there is a constant c′ > 0, such that

ln
( n
4k

)
≥ c′ ln

(en
k

)
.

Putting this into (1.28) finishes the proof. !

1.4 Extensions

Section 1.3 gives a detailed overview of the most important features of compressed
sensing. On the other hand, inspired by many questions coming from application
driven research, various additional aspects of the theory were studied in the
literature. We present here few selected extensions of the ideas of compressed
sensing, which turned out to be the most useful in practice. To keep the presentation
reasonable short, we do not give any proofs, and only refer to relevant sources.
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1.4.1 Frames and Dictionaries

We have considered in Section 1.3 vectors x ∈ Rn, which are sparse with respect
to the natural canonical basis {e j}nj=1 of Rn. In practice, however, the signal has
a sparse representation with respect to a basis (or, more general, with respect to a
frame or dictionary). Let us first recall some terminology.

A set of vectors {φ j}nj=1 in Rn, which is linearly independent and which spans
the whole space Rn is called a basis. It follows easily that such a set necessarily
has n elements. Furthermore, every x ∈ Rn can be expressed uniquely as a linear
combination of the basis vectors, i.e. there is a unique c = (c1, . . . ,cn)T ∈ Rn, such
that

x=
n

∑
j=1

c jφ j. (1.29)

A basis is called orthonormal, if it satisfies the orthogonality relations

〈φi,φ j〉=
{
1, i= j,

0, i $= j.
(1.30)

If {φ}nj=1 is an orthonormal basis and x ∈ Rn, then the decomposition coefficients
c j in (1.29) are given by c j = 〈x,φ j〉. Furthermore, the relation

‖x‖22 =
n

∑
j=1

|c j|2 (1.31)

holds true.
Equations (1.29)–(1.30) can be written also in matrix notation. If Φ is an n× n

matrix with j-th column equal to φ j, then (1.29) becomes x = Φc and (1.30) reads
ΦTΦ = I, where I denoted the n× n identity matrix. As a consequence, c = ΦT x.
We shall say that x has sparse or compressible representation with respect to the
basis {φ j}nj=1 if the vector c ∈ Rn is sparse or compressible, respectively.

To allow for more flexibility in representation of signals, it is often useful to
drop the condition of linear independence of the set {φ j}Nj=1 ⊂ Rn. As before, we
represent such a system of vectors by an n×N matrix Φ . We say that {φ j}Nj=1 is a
frame, if there are two positive finite constants 0< A≤ B, such that

A‖x‖22 ≤
N

∑
j=1

|〈x,φ j〉|2 ≤ B‖x‖22. (1.32)


